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GROUP INVARIANCE PROPERTIES OF THE POISSON-BOLTZMANN

AND OTHER RONLINEAR FIELD EQUATIONS

Roy Arthur Axford

ABSTRACT

Group invariance properties of ordinary, nonlinear differential
equations that occur in the elementary theory of the thermal and
submarine explosion problems are established and applied to the
development of further analytic solutions of these differential

equations.

1. INTRODUCTION

The fact that certein nonlinear field equa-
tions, which occur in the elementaery analysis of
the thermal explosion and submarine explosion prob-
lems, admit various finite, continuous groups of
point transformations apparently has not been rec-
ognized previously. The precise nature of this fact
is established in this report and is applied to ob-
tain both a group theoretic interpretation of the
integrability and further integrals of the nonlinear
field equations that arise in these problems.

2. GROUP INVARIANCE PROPERTIES OF THE POISSON-
BOLTZMANN EQUATION

2.1 Introduction

In this section we esteblish certain group in-
variance properties that pertain to the Poisson-
Boltzmann equation, namely,

v2y +se =0, (s> 0), (2-1)
in one-dimensional plane, cylindricael, and spherical
The fect that the Poisson-Boltzmann

equation admits verious two-parameter groups is

geometries.

applied to the problem of obtaining general inte-
grals of this equation in explicit form for plane
and infinite cylindricel geometries. The absence of
a two-parameter group under which Eq. {2-1) is in-

variant, as in spherical symmetric geometry,

provides an interpretation that Eq. (2-1) cennot be

integrated by quadratures in this geometry, although
it does admit a one-parameter group in this geometry.
2.2 Invariance under the Translation Group in Plane

Geometry
In plane geometry, Eq. (2-1) becomes

y" +.8 e = 0. (2-2)
This differential equation is invariant under the
one-parameter group of translations parallel to the
x-axis of the x-y-plane because the independent
variable does not appear explicitly. Any autonomous
differential equation in two variables is invariant
under this translation group irrespective of the
order of the differential equation.

A second-order, ordinary differential equation
that is known to be invariant under a transformation
group can be reduced to one of first order. This
can be accomplished by the introduction of a first
differential invariant of the group as a new depend-
ent variable, and of an invariasnt of the group as a
new independent variable. The determination of an
invariant and a first differential invariant of the
group requires the calculation of two linearly in-
dependent solutions of the linear, first-order,
partial differential equation obtained from the sym-
bol of the first extension of the infinitesimal

transformation of the group. The group of




translations under which Eq. (2-2) is invariant can
be generated from the infinitesimal transfaormation
represented by the symbol

Bf

Ur = 5= . (2-3)

Because this is also the symbol of the once-extended
group, an invariant and first differential invari-

ant are solutions of

U'f(x,y,y ) = '_' f(x’y,y ) = 0, (2‘1‘)
with the equivelent first-order system
ax . dy . 4y’ -
o "o -1 ° (2-5)
Accordingly,
ulx,y) = y (2-6)
is an invarient, and
u(x,y,y') =y’

(2-7)
is a first differential 1nveriant of the group of ‘

translations. Upon 1ntroducing the new variables
defined by
Y = u'(x,y,5") = y' (2-8)
and
X =ulx,y) =y (2-9)
into Eq. (2-2), we obtain
Yay + s eX ax = o, (2-10)
because
Y Y oY
oo dx + dy + !
4 x ay d " i = it (2-11)
ax 33X ax + 33X dy '’
ax ay
so that
1 v &Y ay i
ey g Yax - . (2-12)
Integration of Eq. (2-10) produces
YP=c -s2e, (2-13)
in which Cl is an arbitrary constant. With Egs.
(2-8) and (2-9), this last relation becomes
oo -2se, (2-14)
so that
x = C, +.[dy[Cl -28 e"]'l/2 s " (2-x5)

where C2 is the eecond arbitrery constant, is.the
general solution of Eq. (2-2).

The sbove procedure, used to find the general
solution of Eq. (2-2) as given by Eq. (2-15), com-
prises the group theoretic interpretation of the
elementary integration procedure described as
If the independent variable is missing

gt
in a second-order, ordinary differential equation,

follows.

let y' = p and y" = p dp/dy, determine the function
p = p{y), and then integrate the resulting separable
differential equation y' = p. However, the group
theoretic method can be applied to any second-order
differential equation,

Flx,y,y',y") = 0, (2-16)

that i8 known tb be “invariant under & one-parameter

_group-of point transformations even if the inde-

pendent variable appears explicitly. The elemen-

tary procedure may not be so applied because it

depends upon the absence of the independent varil
able.
2.3 A Second One-Parameter Group Admitted by

y" + 8 exply) = 0
The invariance of Eq. (2-2) under the trans-

.llation group is. apparent because of the absence of

the independent variable. A gecond-order, ordinary
differential equation ia, at most invariant under
eight linearly independent, one-parameter groups,
although it need not necessarily admit any group.
The question then arises of finding any further
groups admitted by a second-order differentiel
equation, if in fact one is‘;dnitted{ ﬁefnoﬁ prove
the following preposition.

Pro EQSition 2 1.
tiel equation, y" + s exp(y) = O, is invariant

The second-order differen-

under the one-parameter group of poxnt transforma-
tions that is generated by the infinitesimal trans-
formation with the symbol

af _ af
. . v Uf = x ™ 2 3y

Proof: The symbol of the once-extended group
generated by Eq. (2-17) is

af , 3f , of
U'f = x % - 3y -y 5;7

and the first-order partial differential equation
that corresponds to y" + s exp(y) = 0 is

a3 _ af
s 3y = ° exp(y) T = 0,

MR AR Y

(2-17)
. (2-18)

AL = (2-19)

The commutator constructed from the operators that
appear in Eqs. (2-18) and (2-19) assumes the value

(Ua)f = - %5 -y g; + 8 exp(y) 3-1-- - Afr. (2-20)

Therefore, Eq. (2-19) is invariant under the group
generated by Eq. (2-17) because the invariance
condition, (U'A)L = A{x,y,y") AL, is satisfied with
A = -1. Accordingly, the second-order differential
equation in question glso admits the group gener-
ated by Eq. (2-17) besause it is equivalent to the

partial differential equation in Eq. (2-19).
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Although y" + 8 exp(y) = 0 is inveriant under
the one-parasmeter group generated by Eq. (2-17), it
is not the most general form of a second-order, or-
dinary differential equation that admits this group.
This form is contained in the following result.

Proposition 2.2. The general form of a second-
order, ordinary differential equation that admits
the one~parameter group generated by the infinites-

imal transformation,

ur=x -2 1— , (2-21)
is contained in the relation,
f(xey", xy', y + 1o x°) = 0, (2-22)

in which ¢ is an arbitrary function of the three
indicated arguments.

Proof: The symbol of the second extension of the
group generated by Eq. (2-21) is

e = 88,38 _ _,3f _ nw of
U"f = x o 2 = y Yy ay 2y s;w .

The first-order system that corresponds to U"f = 0
is

(2-23)

d' 1"
%5 = - %1 = - ;¥— = - %;w . (2-24)
Accordingly, an invariant of the group under gques-

tion comes out of

& . _ 4y -
= -- 3 (2-25)
in the form
ulx,y) =y + 1n x2 ; (2-26)
e first differential invariant out of
ax . _ ay'
x == yv (2‘27)
in the form
u'(x,y,y') = xy' 3 (2-28)
and & second differential inveriant out of
”
T (2-29)
in the form
u"(x,3,5",3") = Xy . (2-30)

The arbitrary function of this invariant and first
and second differential invariants given in Eq.

(2-22) is, then, the genersl form of a second-order,

ordinary differential equation that admits the one-

parameter group of point transformations generated
by the infinitesimal transformation with the symbol
of Eq. (2-21).

2.4 A Two-Parameter Group Admitted by

y' + s exply) =0

A second-order, ordinary differential equation

that admits a two-parameter group of point trans-
formations is integrable by quadratures. Accord-
ingly, the following result is of interest.

Proposition 2.3. The second-order differential
equation, y" + s exp(y) = 0, is invariant under the
two-parameter group of point transformations gener-
ated by the two basis transformations,

af

u L=, (2-31)
and
f ar
Uf = x50 -2 5y (2-32)

Proof: The invariance of the differential equation
under each of these transformations has already
been shown. Therefore, it is sufficient to show
that Ulf and U2f comprise the basis of a two-
parameter group, which will be the case if their
commutator is e linear combination of the basis
transformations, that is, if

(0102)f = e U, f + eUf (2-33)

in which e and e, are constants. The proposition
is established by evaluating the commutator:

(ulua)r = U, f. (2-34)

The two-parameter group generated by the in-
finitesimal transformetions that appear in Egs.
(2-31) and (2-32) is of the third type in the sense
of Lie's definition of the four basic types of two-
parameter groups. The most general form of second-
order, ordinary differential equation, which is in-
variant under this two-parameter group, is not
¥" + s exp(y) = 0, but that contained in the fol-
lowing result.

Proposition 2.4. The general form of a
second-order, ordinary differential equation that
is invariant under the two-parameter group gener-
ated by the basis,

=3, (2-35)
and
ur=xE. %§ (2-36)
is given by the relation
[ 5+¥-21lny'| =0, (2-37)
(y")

in which £ is an arbitrary function of the two
indicated arguments.

Proof: The second extensions of the two basis
transformations given in Eqs. (2-35) and (2-36) are



U.l'f = 'a > (2—'38)
and
" af 38 ., 3 w of _
U2f = x o 2 ay =¥ oy 2y Il (2-39)

Each of these last two operators annihilates the
relation of Eq. (2-37), a fact thet establishes the
proposition.
A further result relative to the group invari-
ance properties of y" = s exp{y) = 0 follows.
Proposition 2.5. The second-order differential,
y" + 8 exp(y) = 0, is invariant under r-parameter
groups of point transformations for the cases of
r =1 and r = 2, but not for the case of r 2> 3.
The proof that establishes this result is too space-
consuming to be included here.
2.5 Integration of y" + s exp(y) = 0 by the Utili-
zation of the Two-Parameter Group It Admits

The inveariance result stated in Proposition
2.3 may be exploited to obtaln the general solution
of y'" + 5 exp(y) = 0 in analytic form. The canon-
ical variables of the two-parameter group generated
by the basis of Eqs. (2-35) and (2-36) are

X = exp(-y/2) (2-40)
and
Y = x + exp(-y/2). (2-k1)
Introduction of these new veariables into
y" + s exp(y) = O produces
X ifi = (1 - %%) [1 + %(1 - %%)2] . (2-42)

The general solution of this equation is

,201 [
sti —s——ln[x+ X -Cl]+02, (2"'“3)

in which Cl and 02 are arbitrary constants, and the
choice of the sign depends upon the boundary condi-
tions.

By reverting to the original variables, we
find that

x = C,* JE?; 1n [exp(—y/e) + Jexp(-y) - € |,(2-kb)
the general solution of y" + s exp(y) = O.

If this solution is now subjected to the
boundary conditions, y'(0) = 0 and y(1) = 0, we
find that the positive sign in Eq. (2-43) is to be
taken and that
(2-45)

where Yo is the value of the solution at x = 0, and

c, = exp(-yo),

- _F - ey g ]
C, = 1 - 2 expl-y,) ln[l + /T = exply ) |- (2-16)
It follows that

2

x =1 += exp(-yo)
exp(-y/2) + Yexp(-y) - exp(-y )
1n (2-b47)
1+ /7= expz-yoi

for the above boundary conditions. Resolving this

lest reletion with respect to y produces

B eestyy)

- 2 1n cosh (x f%-exp(yo)) . (2-48)

The value of the solution at x = 0 is a root of the

Yy = 2 1n cosh

transcendental relation,

exp(y /2) = cosh( % exply,) ), (2-49)
so that Eq. (2~48) may also be written as
y=y,~-21n cosh(x v% exp(yo) ) . (2-50)

This last relation is the solution of y" + s exp(y)
= 0 subject to the boundary conditions, y'(0) = 0
and y(1) = 0, provided that a root of Eq. (2-49)
There ere two roots of Eq. (2-49) if

0 < s < 0.88, and none if s > 0.88.l The result

exists.

contained in Eq. (2-50) agrees with that given by
Carslaw and Jaeger,l who obtained it by a different
method. The general solution of y" + s exp(y) = 0
conteined in Eq. (2-44), and obtained by methods
based upon invariance properties, leads to Eq.
(2-50) as & special case for particular boundary
conditions.

2.6 A One-Parameter Group under Which V2y + s exply)

= 0 ig Invariant in One-Dimensional Plane,

Cylindrical, or Spherical Geometry
The differential equetion, V2y + 8 exp(y) = 0,

possesses the rather remarkable property of being
invariant under the same group of poini transforma-
tions in one-dimensional plane, cylindrical, and
spherical geometries. This property is embodied in
the following result.
Proposition 2.6.
differential equation,

xzy" + Nxy'+ s exply + 1n x2) = 0,

The second-order, ordinary

(2-51)
is invariant under the one-parameter group of point

transformations generated by the infinitesimal



transformation,

=, 9L _ , 3f -
Uf = x 3 - 2 5 ° (2-52)

for all values of the constant, N. If N = 0, then
Eq. (2-51) is V2y + 8 exp(y) = 0 for plane geometry.
The case of N = 1 corresponds to infinite cylindri-
cal geometry, and N = 2 is the case of spherical
geometry with spherical symmetry.

Proof:

Proposition 2.2 when the arbitrary function indi-

This proposition is a direct consequence of

~ated in Eq. (2-22) is taken so as to give Eq.
(2-51).

Section 2.4 shows that v2y + s exp(y) = 0 is
invariant under a two-parameter group in the case
of plane geometry. In spherical geometry with
spherical symmetry this differentisl equation admits
only a single one-paresmeter group.

Proposition 2.7.
differential equation,

xzy" +2xy' +8 X2 exp(y) = 0,

The second-order, ordinary

(2-53)
is invariant only under the one-parameter group
generated by the infinitesimal transformation

af of

Uftx-ﬁ-2-§. (2-54)

Because of its length, the proof of this result will
be omitted here.

A practical consequence of Proposition 2.7 is
thet it provides a group theory argument for the
fact that we should not expect the Poisson-Boltzmann
equation in sphericelly symmetric geometry to be
integrable by quadratures alone.

In the case of infinite cylindrical geometry,
Eq. (2-51) admits further groups beyond that gener-
ated by the symbol of Eq. (2-52).

2.7 _Further Groups Admitted by Voy + s exp(y) = 0

in Infinite Cylindrical Geometry

An additional one-parameter group and & two-
parameter group of point trensformations are ad-
mitted by sz + 8 exp{y) = 0 in the case of infinite
cylindrical geometry.

Proposition 2.8.
differential equation,

The nonlinear, second-order

xay" +xy' ¢+ 8 x2 exp(y) = 0,
is invaeriant under the one-parameter group of point
transformations generated by the infinitesimal
transformation represented by the symbol

= ar _ af -
Uf = x 1n x o 2 (1 + 1n x) ay (2-56)

(2-55)

Proof: The symbol of the once-extended group repre-
sented by Eq. (2-56) is

Ufexlnx2L_2(1+1nx) %§

X
2 | 3f _
-[; +(L+Inx)y ]ay' s (2-57)

and the linear, first-order partial differential
equation that is equivalent to Eq. (2-55) is

z L ar [yl ) S -
Af = a * y' W - [x +8 exp(y)]ay, 0. (2-58)

Because the commutator that comes out of the
operators appearing in Eqs. (2-57) and (2-58)
agsumes the value
(U'A)? = -~ (1 + 1n x) Af, (2-59)

the proposition is established becsuse the invari-
ance condition, (U'A)f = A(x,y,y')Af, is satisfied
with A = - (1 + 1n x).

The invariance property stated in Proposition
2.8 is a special case of the result that follows.

Proposition 2.9.
differential equation contained in the relation, in

The second-order, ordinary

which f denotes an arbitrary function of the three
given arguments,
f[y +21n (x 1n x), (xy* + 2) 1n x,

(x“y" + xy')(1n x)2] = 0, (2-60)
is the general form of such an equation that admits
the one-parameter group of point transformations
with the infinitesimal transformation,

Uf =x 1ln x k2 S (L + 1n x) %§ .

™ (2-61)

Proof: This proposition can be established by
determining an invariant and first and second dif-
ferential invariants of the group in question by
computing three functionally independent integrels
of the linear, first-order partial differential
equation obtained with the symbol of the second
extension of the group. This partisl differential

equation is

Ne = of _ of ' vy of
U = x Inx 55 - 2 (1 + 1an x) ay th (x,¥7,¥") "
" ' " of
+ n"(x,y,5"5¥") il (2-62)
in which
n'(x,}';}") E - % - (l + 1n x) y', (2‘63)

and

n"(x,y,r',y") = 25 - il -2y" (1 +1n x). (2-6k4)
X

The first-order system equivalent to Eq. (2-62) is



ax . dy = dy'

x1lox ~-2(01 +1nx) n'(x,y,5y")
d " ( 6 )

= —"-(—L“T . 2-

n x,}',}",y >
From the first and second members, we have

dx dy
=
xlnx =-2(1+1nx)°®

and the solution of this gives a group invarient in

(2-66)

the form
u(x,y) = y + 2 1n (x 1n x). (2-6T)
The first end third members of Eq. (2-65) give
dx - - 4y’ _
x 1o x s (2-68)

% + (14 1nx)y

the solution of which produces the first differen-
tial invariant

u'(x,y,5') = (xy' + 2) 1n x. (2-69)
The first and fourth members of Eq. {2-65) yield
dx dy" (
= s 2-70)
x 1n x 25 - fl - 2(1 + 1n x) y"
x

and the gecond differential invariant that comes out
of this relation is

u"(x,y,y',¥y") = (1n x)2 (x2y“ + xy'). (2-71)
Since Eq. (2-60) is an arbitrary function of the
group invariant and first and second differential
invariants just obtained, the proposition is estab-
lished.

Equation (2-55) is obtained as a special case
of Eq. (2-60) when the arbitrary function in Eq.
(2-60) is taken so that

' (x,¥,y'.y") + s explu(x,y)} = 0. (2-712)

Equation (2-55) elso admits a two-parameter
group.

Proposition 2.10. Equation (2-55) is invariant
under the two-parameter group of point transforma-
tions with the basis transformations

af ar
U f = x 5o = 2 5y (2-73)

and

af of
Upf = x 1nx 3= 2 (L + 1n x) 3y (2-74)

Proof: The inveriance of Eq. (2-55) under each of
the groups of the basis transformations has already
been shown above. Since the commutator of the
basis operators assumes the form (Ulua)f = U,f, and
also since Ut ¥ plx,y) Ulr, the above besis trans-
formations generate a two-parameter Lie group of
the third type.

Equation (2-55) is e special case of Eq. {2-60).
It is elso a special case of the general form of a
second-order differential equation that admits the
two-parameter group generated by the basis trans-
formations of Egs. (2-73) and (2-74).

Proposition 2.11. The second-order, ordinary
differential equation

x2 ] xey" + xy']

(2+ xy")2] (2 +xy")?
in which ¢ is an arbitrary function of the two

¢y + ln[ =0, (2-75)

indicated arguments, comprises the general form of
such an equation thet is invariant under the two-
paraneter group of point transformations generested

by the basis transformations

Uf = x50 -25%; (2-76)

and

af of
Uf =x1nx5--2 (1 + 1n x) 3y (2-77)

Proof: This proposition is a direct consequence of
the fact that the two operators of the second ex-
tensions of the two basis transformations of Egs.
(2-76) and (2-77) annihilate the relation of Eq.
(2-75).

As an example of Eq. (2-75), in which a
specific form is chosen for the arbitrary function,
¢, we may take

x2 TN ' x2

_y_xx_a +8expi{y+ lnj————— | = 0,(2-78)

(2 + xy') (2 + xy")

which simplifies down to the Poisson-Boltzmann equa-

tion in infinite cylindrical geometry.

2.8 General Integrals of the Poisson-Boltzmann
Equation in Infinite Cylindrical Geometry
Proposition 2.10 shows that the Poisson-

Boltzmann equetion in infinite cylindrical geometry
admits the two-parameter Lie group with the basis
transformations of Egs. (2-73) and (2-T4). This
fact may be exploited to effect the integration of
Eq. (2-55) in closed form.

The canoniceal variables of the two-parameter
group generated by the basis transformations con-
tained in Egs. (2-73) and (2-Th) are

X = x1 exp(-y/2) (2-19)
and

Y =1nx+xt exp(-y/2). (2-80)
The introduction of these last two relations into

Eq. (2~55) produces its canonical form




2 2
ax _ _QL) 8 _ﬂ) -
ke (1 o li + 2( X ]. (2-81)
If we let
w=1-% (2-82)
in Eq. (2-81), it becomes
du 8 dX
( 2.2\ 2% ° (2-83)
ulu +;)
Consequently, & first integral of Eq. (2-81) is
2C
ay 1 1
1 - i + S - , (2-8k4)
X ~-C

1
in which Cl is an arbitrary constant. A second

quadrature yields the general solution of Eq.
(2-81),

5C
Y=0C,+X I'IZ;E ln[X + {xz -c ], (2-85)

in which 02 is the second arbitrary constant. 8Sub-

stituting Eqs. (2-T9) and (2-80) into Eq. (2-85)

produces the relation

’2C
lnx:sz Tl-ln[gﬂ%w

- Cl]’
X

which is the general solution of Eq. (2-55), the

(2-86)

Poisson-Boltzmann equation in infinite cylindrical
geometry. The arbitrary constants and choice of
sign implied in Eq. (2-86) depend upon the boundary

conditions.

If the homogeneous Dirichlet boundary condition,

y(1) = 0, is imposed, we teke the plus sign in the
second term on the right-hand side of Eq. (2-86)
and find that

2Cl
C,=- —1n(1+/1-c >
s 1
It follows that

2c, x-lexp(-y/2) + fx-zexp(-y) -C

ln x = y—=1n

s 14»»'1-0l

(2-87)

(2-88)
which can be written in the alternative form, o

2Cy Xt exp(-y/2)
in x = e arccosh
Cl

- arccosh A .

€1

(2-89)

The resolution of Eq. (2-89) for the dependent
veriable, y, produces, first of all, the quadratic

equation,

8
X2 -2 cosh<]'-2-5i- 1in x> X+1
+c sinh2<-l,-2z—l 1n x> =0, (2-90)

exp(=y/2) = x cosh< 5%— 1in x>
1

and, finally,

tx/T-¢ sinh(llesTl 1n x> ,  (2-91)

which comprises the two solutions of Eq. (2-90).
If we impose the homogeneous Neumann boundary con-
dition, y'(0) = 0, it follows from Eq. (2-91) that
ve must take C, = s8/2, so that

exp(-y/2) = x cosh (1n x)

+ x /1 - 8/2 sinh (1n x). (2-92)
This result simplifies to the form
y=2 ln[ 2 . (2-93)
(L+/1-38/2) x*+1%/1-5s/2

It is a consequence of the relation of Eq.
(2-93) that the inequality,

8 €8 =2
— “max ’

(2-9k)
must be satisfied if Eq. (2-93) is to predict reel
values for the solution of the Poisson~Boltzmenn

equation in infinite cylindrical geometry. If

s =s . then Eq. (2-93) becomes
y=21n __2__5 , (2-95)
1+ x
which has the meaximum value
Ypax = 18 bs (2-96)

at x = 0. If s <sg , the two solutions of Eq.
‘max
(2-93) are
yy=lnb-21n [1 - -s/2
s(1+ Aerz) <2 (2-97)
and
yp=inh-2l|1+/T-s/2
+ (1 - /1= s/2)x2]. (2-98)

The maximum velue of the solution in Eq. (2-97) at
x =0 1is

Y] pax = 18 4y -21n {1 -1 - s/2),

(2-99)



and that of Eq. (2-98) is

=inh -21n (1 + A - 5/2). (2-100)

y2,max
Note that yl,max > Ypax
higher center temperature for & smaller source term

ig predicted by the solution of Eq. (2-97), which

even though s < 8pax" A

may not, therefore, be a stable and observable so-
lution. However, it is noted that y2,max < ym
for the solution of Eq. (2-98).

The preceding discussion of the Poisson-~
Boltzmann equation in infinite cylindrical geometry
may be compared with that given by Chambre,2 who
elso obtained the results contained in Eqs. (2-94)
through (2-96), but from a rather different point
of view. The general solution of Eq. (2-55) as
obtained in Eq. (2-86) does not appear to have been
established previously.

3. OCCURRENCE OF LIE GROUPS IN THE ANALYSIS OF
SPHERICALLY SYMMETRIC, IRROTATIONAL FLOWS OF
AN INVISCID, INCOMPRESSIBLE FLUID

3.1 Introduction
The cognate problems of analyzing the collapse

of a spherical bubble and the expansion of & spher-
ical cavity in an infinite expanse of fluid have

been treated by Rayleigh3 and Lamb.k

The invariance
properties of certain nonlinear, ordinary differen-
tial equations under groups of point transformations
are established in this section for these problems.

3.2 Formulation of the Problem

The spherical cavity collapse and expansion
3 and Lambh can be
regarded as special cases of a common formulation
to display the underlying physicel limitations in-
herent in the discussion.

If we let p 2 density, ¥= velocity field, p =
pressure, and $s body force per unit mass, then

problems considered by Rayleigh

the equation of continuity is

3t 8, ¥, grad p + p div ¥ = 0, (3-1)

and the equation of motion for an inviscid fluid is
X
ol%t- + (Vegrad) V] =p $ - grad p. (3-2)

If the body force is derivable from a potential, 2,
so that

$ = - grad 0, (3-3)
and if it is noted that
grmjglﬂ %grad Ps (3-4)

the equation of motion becomes

3v + (Vograa) ¥ = - grad (o +.[%2). (3-5)
With the vector identity
(Fograa) ¥ = graa (LX) - ¥ xcunn ¥, (3-6)
Eq. (3-5) reduces to
g—z-VXcuerB—grad(ﬂ-ﬁv.Tv-’-J-%B). (3-7)

The assumption of an irrotational flow, that is,
curl ¥ = 0, so that V = - grad P, wherein P =
velocity potential, produces from Eq. (3-7) the

form
%E grad P = grad (n + géz +.I%2). (3-8)
Integration of this last relation produces
c(t)._ﬁ+n+vv j_p_ (3-9)

in which C(t) is an arbitrary function of the time.
We now apply Eqs. (3-1) and (3-9) to spheri-
cally symmetric flows around a spherical cavity
surrounded by an infinite extent of a fluid already
If the further assumption
is made that the fluid is also incompressible, the

assumed to be inviscid.

continuity equation is simply div V= 0, and, con~
sequently, the velocity potential satisfies Laplace's
equation, div grad P = 0, which for a spherically
symmetric flow is
2 a (2 92) -

2dr(r ar/ = 0 (3-10)

This integrates to
€1
P=o—=4tc,, (3-11)

in which we teke e, = 0 for & vanishing velocity
potential at infinity. Let R

between the spherical cavity and the surrounding

= gpeed of the surface

fluid. Then
. c
R=VI(R) = - :—i— = - —; . (3-12)
r=R
With the velue of the constant c, es given by Eq.
(3-12), the velocity potential is
Raﬁ

P=-=

(3-13)

Now assume that body forces are negligible, so Q =
0, and evaluate the time dependent Bernoulli equa-
tion, Eq. (3-9), at infinity to get

(3-1%)

At any

P
C(t) 'p—' s

wherein P, = fluid pressure at infinity.



redial position, r, we have

P,
) . | hd -
5= at*avf-*p' {3-15)
Because
2.
2 KR g
Ve = 2 ° (3-16)
r
Eq. (3~15) becomes
P L2
P» 3 (RR\,1LRER  p _
P2 (ER), L FEEe 2, (3-27)
which in turn simplifies to
he2
%(Rax + 2R Ra) —5;‘;}—--%(1: -p,). (3-18)

Evaluetion of Eq. (3-18) at the cavity-fluid inter-
face yields the relation

RR + % R = % [p(R) - p,]

as the nonlinear differential equation that governs

(3-19)

the time dependence of the radius of the cavity.
In this equation, p(R) is interpreted as the pres-
sure of the gas in the cavity.

If we assume that p_ >>> p(R) for all values
of the cavity radius, R, then Eq. (3-19) becomes

. 3 . 2 P.
RR + 2 R = = — , -20
3 - (3-20)

This equation underlies Rayleigh's discussion3 of
the bubble collapse problenm.,

However, if we assume that p(R) >>> p, for all
values of the cavity radius, then Eq. (3-19) is
approximated by

Rﬁ+%ﬁ2=2§&
When the gas expansion is adiabatic,

R \¥Y
p(R) = p (ﬁg)

in which y = specific heat ratio of the ges and pgo
is the initial gas pressure that corresponds to the

initial cavity radius, RO. Combining Eqs. (3-21)

. (3-21)

(3-22)

and (3-22) produces

3y
P R
B4 3R = B2 _2)
RR + > R 0 (R .
This nonlinear differential equation is the basis

(3-23)

of Lamb's discussion of the early stages of a sub-

marine explosion. The physical limitations inher-
ent in its formulation have bheen delineated above.
Lambh was of the opinion that Eq. (3-23)-15
integrable by quadratures only in the case for
which vy = 4/3. We now establish the fact that Eg.

(3~23) is invariant under certain groups of point
transformations and to exploit this fact to obtain
further closed form, analytlic solutions of Eq.
(3-23) by quadratures.
3.3 Lie Groups Applicable to the Submarine Explo-
sion Problem
In Eq. (3-23), let y = R, t = x, and K =
psongY/p, 80 that we may write

w2 nE =y, (3-24)

This nonlinear differential equation is invariant
under the group of translations parallel to the x-
axis because it is autonomous. We also find the
following result.

Proposition 3.1. The one-parameter group of
point transformations generated by the infinitesimal
transformation represented by the symbol

af 1 af
Ur = x <t 3y 7 (3-25)
in which
a=1+ %1 , (3-26)

is admitted by Eq. (3-24).
Proof: The linear, first-order partial differen-
tial equation equivalent to Eq. (3-24) is

_ o af -3y-1
A=tV o [K y

-1 2] af
"_32-y (y')]ay|=o'
The symbol of the once-extended group generated by
Eq. (3-25) is

e = ¥ (L._ ) v 3
u's ax + - Sy + - l) ¥ oy’

The value of the commutator that comes out of the
symbols of Egs. (3-27) and (3-28) is
(U'A)L = - A,
vwhich establishes the proposition.
A further result follows.

(3-27)

(3~-28)

(3-29)

Proposition 3.2. The nonlinear, second-order
differential equation,

w3 (y )2 =k y3Y, (3-30)

is invariant under the two-parameter group of point
transformations whose basis transformetions are

represented by the symbols

- ot -
u = (3-31)
and
= Z.af ~
Uf = x 2 ax 5 oy (3-32)

Proof: The symbols of Eqs. (3-31) and (3-32)



generate a two-parameter group because they are in-
dependent and because their commutator assumes the
form (UlUZ)f = U,f. The invariance of Eq. (3-30)
under the transformations generated by Eqs. {3-31)
and (3-32) has already been estaeblished.

The two-parameter group generated by the basis
transformations included in Egs. (3-31) and (3-32)
is of the third type in the sense of Lie's defini-
tion because they are unconnected and because their
commutator takes the form previously indicated.

3.4 Reduction to Canonical Form and Integration of
the Cavity-Radius Differential Equation

Because of the inveriance property of Eq.
(3-30) established in Proposition 3.2, this differ-
ential equation may be reduced to its canonical

form which is integrable by quadratures. The appro-
priate canonical variables are

Y =x (3-33)
and

X = yu . (3-31‘)

In terms of these canonical variebles we have
l-a

-1
x ® ray
y' = E— (%) (3-35)
and
2
"‘ﬂx-&-(l-a)<d_y_)—2
v 2 ax
2
-3 .2, ¥1-a)
SRS (3-36)

The substitution of Egs. (3-34) through (3-36) into
Eq. (3-30) produces
2

3
SXad (o) o ety

which is the canonical form of Eq. {3~30).

8ince the solution of Eq. (3-30) is to satisfy
the initial conditions, y(0) = ¥, and y'(0) = 0, it
follows that Eq. (3-37) is to be solved subject to
the conditions

(3-37)

Y = 0 when X = y°°‘ (3-38)
and
%-» - when X = y3 . (3-39)
In Eq. (3-37), let
ay
u = (3-%0)
and

10

2.~ e=2/2, (3-b1)
a K
it then becomes
o a
Yo .
u (u® + r°) ,
u X ’
which integrates out to provide
- L . (3-43)

It follows that

N (3-4h)

. (3-b5)

This last relation may also be written as

a

(%)

o
x =T y: —-——'——'dt . (3—“6)

3
=Hy-1)

) T -1 |

The preceding discussion has established the follow-

ing result.

Proposition 3.3.
differential equation

The solution of the nonlinear

(3-47)

subject to the two initial conditions, y(0) = Yo

yy" + % (y,)? = K y"'3Y’

and y'(0) = 0, is given by the integral representa-

tion,

(3-18)



wherein
a=1+3 (3-49)
and
=g —=tl (3-50)
3y
2K (1 + 3 )

A solution of Eq. (3-47) was obtained by Lambu

for the special case in which the specific heat
ratlo is assigned the value y = 4/3. This solution
also comes out of Eq. (3-48), that reduces to

3
(%)
Yo
x=7T yg ar (3-51)
71/3 -1
1
when y = 4/3. Because in this case
1
r= s (3-52)
3v2K

2
e R |
1

(3-53)
it follows that Eq. (3~51) simplifies to

2y] 2
w3 AR LAl B

which is equivelent to that obtained by Lambh by

x =

another method. However, the integral representa-
tion of Eq. (3-48) also provides further analytic
solutions of Eq. (3-47) for additional values of
the specific heat ratio.

For example, let

1,301
3 P (3-55)
in Eq. (3-48). Then with t = t2q, it becomes

_(l
(yo)

2q-1
x =1 y%2q | S

t2 -1

(3-56)

If we set 9@ = 3 in this last relation, it can be re-
duced to the result already given in Eq. (3-5k).
Further reductions follow.

(1) 1f q = 5/2, we have y = 17/12 and

. jg;;é l[2(¥;)15/8 . 3@Z)s/a] /<§:)5/5 .
. 31m [($;)5/8 . /(53)5/5 _ 1] .

(2) 1f q = 2, we have Yy = 14/9 and

53 1P/2 573
x = %yiom %[@—) - 1] + ()Y'—) -1}.

[o] ]

(3-57)

(3-58)
(3) If q = 3/2, we have y = 11/6 and
yi3/ 5/4 573 5/%
R (R (= IR O
572
+ V(ﬁ;) - 1] . (3-59)

Equations (3-57) through (3-59) are the analytic
solutions of Eq. (3-47) that are valid for the
indicated values of the specific heat ratio, y.

Further integrals of Eq. (3-47) may be con-
structed from Eq. (3-48).
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